Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Sci Rep ; 14(1): 778, 2024 01 22.
Article En | MEDLINE | ID: mdl-38253656

Accurate determination of human tumor malignancy is important for choosing efficient and safe therapies. Bioimaging technologies based on luminescent molecules are widely used to localize and distinguish active tumor cells. Here, we report a human cancer grade probing system (GPS) using a water-soluble and structure-changeable Eu(III) complex for the continuous detection of early human brain tumors of different malignancy grades. Time-dependent emission spectra of the Eu(III) complexes in various types of tumor cells were recorded. The radiative rate constants (kr), which depend on the geometry of the Eu(III) complex, were calculated from the emission spectra. The tendency of the kr values to vary depended on the tumor cells at different malignancy grades. Between T = 0 and T = 3 h of invasion, the kr values exhibited an increase of 4% in NHA/TS (benign grade II gliomas), 7% in NHA/TSR (malignant grade III gliomas), and 27% in NHA/TSRA (malignant grade IV gliomas). Tumor cells with high-grade malignancy exhibited a rapid upward trend in kr values. The cancer GPS employs Eu(III) emissions to provide a new diagnostic method for determining human brain tumor malignancy.


Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain , Luminescence , Records
2.
Biochem Biophys Res Commun ; 699: 149566, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38290176

There is increasing interest in the antimicrobial activity of mannosylerythritol lipids-B (MEL-B) against Gram-positive bacteria such as Staphylococcus aureus (S. aureus). However, the specific molecules involved in MEL-B's antimicrobial action against S. aureus have not been identified. This study utilized the Nebraska transposon mutant library (NTML), which contains 1920 mutants, each lacking three-quarters of the genes found in S. aureus. The NTML was screened to identify mutants resistant to MEL-B. Four mutants (Accession Number: SAUSA300_0904, SAUSA300_0752, SAUSA300_0387, and SAUSA300_2311) largely unaffected by incubation with MEL-B, indicating MEL-B resistance. Despite the strong binding of MEL-B to these mutants, the four molecules encoded by the deleted genes (yjbI, clpP, pbuX, or brpS) in each mutant were not directly recognized by MEL-B. Given that these molecules are not localized on the outer surface of S. aureus and that the antibacterial activity of MEL-B against S. aureus is facilitated by the effective transfer of two antibacterial fatty acids (caprylic acid and myristoleic acid) to S. aureus via ME, the deletion of each of the four molecules may alter the peptidoglycan structure, potentially inhibiting the effective transfer of these antimicrobial fatty acids into S. aureus.


Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Anti-Infective Agents/pharmacology , Staphylococcal Infections/microbiology , Fatty Acids , Microbial Sensitivity Tests
3.
Curr Res Toxicol ; 5: 100114, 2023.
Article En | MEDLINE | ID: mdl-37554151

The current study was designed to evaluate the protective effect of fenugreek seed powder against As-induced neurobehavioral and biochemical perturbations using a mouse model. Mice exposed to arsenic at 10 mg/kg body weight showed development of anxiety-like behavior and memory impairment compared to control mice in elevated plus maze and Morris water maze tests, respectively. A significantly decreased acetyl and butyrylcholinesterase, superoxide dismutase and glutathione reductase activities and brain-derived neurotrophic factor levels were found in the brain of arsenic-exposed mice compared to control mice. Interestingly, supplementation of fenugreek seed powder to arsenic-treated mice significantly restored the activity of cholinesterase and antioxidant enzymes (e.g. superoxide dismutase, glutathione reductase) as well as brain-derived neurotrophic factor levels in the brain tissue of arsenic-exposed mice. Consequently, reduced anxiety-like behavior, improved learning and memory were observed in fenugreek supplemented arsenic treated mice compared to only arsenic-exposed mice group. Thus, this study suggests that fenugreek seed powder reduces arsenic-induced neurotoxicity in mice.

4.
Analyst ; 148(13): 3087-3096, 2023 Jun 26.
Article En | MEDLINE | ID: mdl-37310360

This paper presents a novel approach for the fabrication of low cost Electrochemical-Surface Enhanced Raman Scattering (EC-SERS) sensing platforms. Laser Induced Graphene (LIG) electrodes were readily fabricated by direct laser writing of polyimide tapes and functionalized with silver nanoparticles (Ag NPs) to obtain hybrid Ag NPs - LIG electrodes suitable for EC-SERS analysis. Detection was achieved by coupling a handheld potentiostat with a Raman spectrograph, enabling measurement of SERS spectra of target analytes generated during voltage sweeps in the 0.0 to -1.0 V interval range. The sensing capabilities of the fabricated system were first tested with model molecule 4-aminobenzenethiol (4-ABT). Following sensitive detection of 4-ABT, EC-SERS analysis of food contaminant melamine in milk and antibiotic difloxacin hydrochloride (DIF) in river water was demonstrated, achieving sensitive detection of both analytes without pre-treatment steps. The easiness of fabrication, versatility of design, rapid analysis time and potential miniaturization of the system make Ag NPs - LIG electrodes suitable for a large range of in situ applications in the field of food monitoring and for environmental analysis.

5.
J Toxicol Sci ; 48(3): 149-159, 2023.
Article En | MEDLINE | ID: mdl-36858640

Reportedly, antibiotics, which are frequently prescribed in children, have long-term effects owing to gut microbiota dysregulation. Tosufloxacin tosilate hydrate (TFLX) is the first orally administered new quinolone with high efficacy and broad-spectrum action approved as an antibacterial agent for pediatric use in Japan. However, studies on the effects of its early-stage administration are limited. Therefore, we aimed to analyze the later effects of its developmental administration by monitoring growth rate, neurobehavior, and gut microbiota in mice. The TFLX was administered via drinking water at a dose of up to 300 mg/kg for two consecutive weeks during the developmental period (4-6 weeks of age) or adulthood (8-10 weeks of age). Thereafter, the body weights of the mice were measured weekly to monitor growth rate. Behavioral tests were also conducted on 11-12-week-old mice to examine the neurobehavioral effects of the treatment. Further, to examine the effects of the treatment on microbiota, fecal samples were collected from the rectum of mice dissected at 12 weeks of age, and 16s rRNA analysis was conducted. Our results showed increased body weights after TFLX administration, without any long-term effects. Behavioral analysis suggested alterations in anxiety-like behaviors and memory recall dysregulation, and gut microbiota analysis revealed significant differences in bacterial composition. These findings indicated that TFLX administration during the developmental period affects mice growth rate, neurobehavior, and gut microbiota structure. This is the first study to report that TFLX is potentially associated with the risk of long effects.


Gastrointestinal Microbiome , Male , Animals , Mice , RNA, Ribosomal, 16S , Fluoroquinolones , Body Weight
6.
PLoS One ; 18(1): e0279893, 2023.
Article En | MEDLINE | ID: mdl-36598904

Arsenic is a potent environmental toxicant and human carcinogen. Skin lesions are the most common manifestations of chronic exposure to arsenic. Advanced-stage skin lesions, particularly hyperkeratosis have been recognized as precancerous diseases. However, the underlying mechanism of arsenic-induced skin lesions remains unknown. Periostin, a matricellular protein, is implicated in the pathogenesis of many forms of skin lesions. The objective of this study was to examine whether periostin is associated with arsenic-induced skin lesions. A total of 442 individuals from low- (n = 123) and high-arsenic exposure areas (n = 319) in rural Bangladesh were evaluated for the presence of arsenic-induced skin lesions (Yes/No). Participants with skin lesions were further categorized into two groups: early-stage skin lesions (melanosis and keratosis) and advanced-stage skin lesions (hyperkeratosis). Drinking water, hair, and nail arsenic concentrations were considered as the participants' exposure levels. The higher levels of arsenic and serum periostin were significantly associated with skin lesions. Causal mediation analysis revealed the significant effect of arsenic on skin lesions through the mediator, periostin, suggesting that periostin contributes to the development of skin lesions. When skin lesion was used as a three-category outcome (none, early-stage, and advanced-stage skin lesions), higher serum periostin levels were significantly associated with both early-stage and advanced-stage skin lesions. Median (IQR) periostin levels were progressively increased with the increasing severity of skin lesions. Furthermore, there were general trends in increasing serum type 2 cytokines (IL-4, IL-5, IL-13, and eotaxin) and immunoglobulin E (IgE) levels with the progression of the disease. The median (IQR) of IL-4, IL-5, IL-13, eotaxin, and IgE levels were significantly higher in the early-and advanced-stage skin lesions compared to the group of participants without skin lesions. The results of this study suggest that periostin is implicated in the pathogenesis and progression of arsenic-induced skin lesions through the dysregulation of type 2 immune response.


Arsenic , Keratosis, Actinic , Skin Diseases , Humans , Arsenic/toxicity , Arsenic/analysis , Interleukin-13 , Interleukin-4 , Interleukin-5 , Environmental Exposure , Water Supply , Skin Diseases/chemically induced , Immunoglobulin E/adverse effects
7.
J Ethnopharmacol ; 304: 116024, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36549369

ETHNOPHARMACOLOGICAL RELEVANCE: Clerodendrum viscosum is an important medicinal plant in Ayurveda in Bangladesh and its leaves are used as a remedy for various diseases such as anti-inflammatory, antibacterial, hyperglycemic, hepatoprotective effects. AIM OF THE STUDY: The present study aimed to evaluate the protective effect of aqueous extract of C. viscosum leaves against Pb-induced neurobehavioral and biochemical changes in mice. MATERIALS AND METHODS: Swiss albino mice were divided as a) control, b) lead treated (Pb) and c) C. viscosum leaves (Cle) d) Pb plus Cle groups. Pb-acetate (10 mg/kg body weight) was given to Pb and Pb + Cle groups mice, and water extract of leaves (50 mg/kg body weight) was provided as supplementation to Cle and Pb + Cle groups mice for 30 days. Elevated plus maze and Morris water maze tests were used for evaluating anxiety, spatial memory and learning, respectively. Status of cholinesterase, SOD, GSH enzyme activity and neurotoxicity markers such BDNF and Nrf2 levels were analyzed in the brain tissue of experimental mice. RESULTS: Poorer learning, inferior spatial memory, and increased anxiety-like behavior in Pb-exposure mice were noted when compared to control mice in Morris water maze and elevated plus maze test, respectively. In addition, expression of BDNF and Nrf2, cholinesterase activity along with antioxidant activity were significantly reduced compared to control group (p < 0.01). Interestingly, C. viscosum leaves' aqueous extract supplementation in Pb-exposed mice provide a significant improved neurochemical and antioxidant properties through the augmentation of activity of cholinergic enzymes, and upregulation of BDNF and Nrf2 levels in the brain tissue compared to Pb-exposed mice. CONCLUSIONS: This study suggested that C. viscosum leaves restore the cognitive dysfunction and reduce anxiety-like behavior through upregulation of BDNF mediated Akt-Nrf2 pathway in Pb-exposure mice.


Clerodendrum , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Brain-Derived Neurotrophic Factor/metabolism , NF-E2-Related Factor 2/metabolism , Up-Regulation , Lead/toxicity , Antioxidants/pharmacology , Antioxidants/therapeutic use , Spatial Memory , Cholinesterases , Body Weight , Maze Learning
8.
Food Sci Nutr ; 10(12): 4360-4370, 2022 Dec.
Article En | MEDLINE | ID: mdl-36514774

Arsenic (As) poisoning has caused an environmental catastrophe in Bangladesh as millions of people are exposed to As-contaminated drinking water. Chronic As-exposure causes depression, memory impairment, and liver injury in experimental animals. This study was carried out to assess the protective effect of mulberry leaves juice (Mul) against As-induced neurobehavioral and hepatic dysfunctions in Swiss albino mice. As-exposed mice spent significantly reduced time in open arms and increased time spent in closed arms in the elevated plus maze (EPM) test, whereas they took significantly longer time to find the hidden platform in the Morris water maze (MWM) test and spent significantly less time in the desired quadrant when compared to the control mice. A significant reduction in serum BChE activity, an indicator of As-induced neurotoxicity-associated behavioral changes, was noted in As-exposed mice compared to control mice. Supplementation of Mul to As-exposed mice significantly increased serum BChE activity, increased the time spent in open arms and reduced time latency to find the hidden platform, and stayed more time in the target quadrant in EPM and MWM tests, respectively, compared to As-exposed-only mice. Also, a significantly reduced activity of BChE, AChE, SOD, and GSH in brain, and elevated ALP, AST, and ALT activities in serum were noted in As-exposed mice when compared to control mice. Mul supplementation significantly restored the activity of these enzymes and also recovered As-induced alterations in hepatic tissue in As-exposed mice. In conclusion, this study suggested that mulberry leaves juice attenuates As-induced neurobehavioral and hepatic dysfunction in mice.

9.
Chemosphere ; 298: 134277, 2022 Jul.
Article En | MEDLINE | ID: mdl-35278445

Chronic exposure to arsenic via drinking water is a serious public health issue in many countries. Arsenic causes not only cancers but also non-malignant diseases, including asthma. We have previously reported that arsenic exposure increases the risk of Th2-mediated allergic asthma. The serum level of periostin, an extracellular matrix protein activated by Th2 cytokines, is recognized as a biomarker for Th2-mediated eosinophilic asthma and contributes to enhanced airway inflammation and remodeling. However, the role of periostin in arsenic-related asthma is unknown. Therefore, this study was designed to explore the associations of serum periostin levels with arsenic exposure and the features of asthma in 442 individuals in Bangladesh who participated in our previous study. Exposure levels of the participants were determined by measuring the arsenic concentrations in drinking water, hair, and nails through inductively coupled plasma mass spectroscopy. Periostin levels in serum were assessed by immunoassay. In this study, we found that serum periostin levels of the participants were increased with increasing exposure to arsenic. Notably, even the participants with 10.1-50 µg/L arsenic in drinking water had significantly higher levels of periostin than participants with <10 µg/L of water arsenic. Elevated serum periostin levels were positively associated with serum levels of Th2 mediators, such as interleukin (IL)-4, IL-5, IL-13, and eotaxin. Each log increase in periostin levels was associated with approximately eight- and three-fold increases in the odds ratios (ORs) for reversible airway obstruction (RAO) and asthma symptoms, respectively. Additionally, causal mediation analyses revealed that arsenic exposure metrics had both direct and indirect (periostin-mediated) effects on the risk of RAO and asthma symptoms. Thus, the results suggested that periostin may be involved in the arsenic-related pathogenesis of Th2-mediated asthma. The elevated serum periostin levels may predict the greater risk of asthma among the people living in arsenic-endemic areas.


Arsenic Poisoning , Arsenic , Asthma , Drinking Water , Arsenic/analysis , Asthma/chemically induced , Asthma/epidemiology , Biomarkers/analysis , Drinking Water/analysis , Humans , Nails/chemistry
10.
Microbiome ; 10(1): 31, 2022 02 21.
Article En | MEDLINE | ID: mdl-35184756

BACKGROUND: Establishing fecal microbiota transplantation (FMT) to prevent multifactorial diarrhea in calves is challenging because of the differences in farm management practices, the lack of optimal donors, and recipient selection. In this study, the underlying factors of successful and unsuccessful FMT treatment cases are elucidated, and the potential markers for predicting successful FMT are identified using fecal metagenomics via 16S rRNA gene sequencing, fecal metabolomics via capillary electrophoresis time-of-flight mass spectrometry, and machine learning approaches. RESULTS: Specifically, 20 FMT treatment cases, in which feces from healthy donors were intrarectally transferred into recipient diarrheal calves, were conducted with a success rate of 70%. Selenomonas was identified as a microorganism genus that showed significant donor-recipient compatibility in successful FMT treatments. A strong positive correlation between the microbiome and metabolome data, which is a prerequisite factor for FMT success, was confirmed by Procrustes analysis in successful FMT (r = 0.7439, P = 0.0001). Additionally, weighted gene correlation network analysis confirmed the positively or negatively correlated pairs of bacterial taxa (family Veillonellaceae) and metabolomic features (i.e., amino acids and short-chain fatty acids) responsible for FMT success. Further analysis aimed at establishing criteria for donor selection identified the genus Sporobacter as a potential biomarker in successful donor selection. Low levels of metabolites, such as glycerol 3-phosphate, dihydroxyacetone phosphate, and isoamylamine, in the donor or recipients prior to FMT, are predicted to facilitate FMT. CONCLUSIONS: Overall, we provide the first substantial evidence of the factors related to FMT success or failure; these findings could improve the design of future microbial therapeutics for treating diarrhea in calves. Video abstract.


Diarrhea , Fecal Microbiota Transplantation , Animals , Cattle , Diarrhea/microbiology , Diarrhea/therapy , Fecal Microbiota Transplantation/methods , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Treatment Outcome
11.
J Nutr Biochem ; 99: 108855, 2022 01.
Article En | MEDLINE | ID: mdl-34517096

Patients with inflammatory bowel disease (IBD) have higher incidence of extraintestinal manifestations (EIM), including liver disorders, sarcopenia, and neuroinflammation. Fermented rice bran (FRB), generated from rice bran (RB), is rich in bioactive compounds, and exhibits anti-colitis activity. However, its role in EIM prevention is still unclear. Here, for the first time, we investigated whether EIM in female C57Bl/6N mice is attenuated by FRB supplementation. EIM was induced by repeated administration of 1.5% dextran sulfate sodium (DSS) in drinking water (4 d) followed by drinking water (12 d). Mice were divided into 3 groups-control (AIN93M), 10% RB, and 10% FRB. FRB ameliorated relapsing colitis and inflammation in muscle by significantly lowering proinflammatory cytokines Tnf-α and Il-6 in serum and advanced glycation end product-specific receptor (Ager) in serum and muscle when compared with the RB and control groups. As FRB reduced aspartate aminotransferase levels and oxidative stress, it might prevent liver disorders. FRB downregulated proinflammatory cytokine and chemokine transcripts responsible for neuroinflammation in the hippocampus and upregulated mRNA expression of G protein coupled receptors (GPRs), Gpr41 and Gpr43, in small and large intestines, which may explain the FRB-mediated protective mechanism. Hence, FRB can be used as a supplement to prevent IBD-associated EIM.


Colitis/drug therapy , Colitis/immunology , Dietary Fiber/administration & dosage , Oryza/chemistry , Plant Preparations/administration & dosage , Animals , Chemokines/genetics , Chemokines/immunology , Chronic Disease/therapy , Colitis/chemically induced , Colitis/genetics , Dextran Sulfate/adverse effects , Dietary Fiber/analysis , Dietary Supplements/analysis , Disease Models, Animal , Female , Hippocampus/immunology , Humans , Interleukin-6/genetics , Interleukin-6/immunology , Intestines/immunology , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/immunology , Oxidative Stress , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
12.
Cell Rep ; 36(10): 109655, 2021 09 07.
Article En | MEDLINE | ID: mdl-34496253

The evolutionary strategy of transferring maternal antibodies via milk profoundly impacts the survival, lifelong health, and wellbeing of all neonates, including a pronounced impact on human breastfeeding success and infant development. While there has been increased recognition that interorgan connectivity influences the quality of a mother's milk, potentially to personalize it for her offspring, the underlying bases for these processes are incompletely resolved. Here, we define an essential role of Peyer's patches (PPs) for the generation of plasma cells that secrete maternal immunoglobulin A (IgA) into milk. Our metagenomic analysis reveals that the presence of certain residential microorganisms in the gastrointestinal (GI) tract, such as Bacteroides acidifaciens and Prevotella buccalis, is indispensable for the programming of maternal IgA synthesis prior to lactational transfer. Our data provide important insights into how the microbiome of the maternal GI environment, specifically through PPs, can be communicated to the next generation via milk.


Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Milk, Human/immunology , Plasma Cells/cytology , Animals , Humans , Immunoglobulin A/immunology , Immunoglobulin A, Secretory/immunology , Mice , Peyer's Patches/immunology
13.
Article En | MEDLINE | ID: mdl-34574656

Skeletal muscle mass reduction has been implicated in insulin resistance (IR) that promotes cardiometabolic diseases. We have previously reported that arsenic exposure increases IR concomitantly with the reduction of skeletal muscle mass among individuals exposed to arsenic. The arsenic methylation capacity is linked to the susceptibility to some arsenic exposure-related diseases. However, it remains unknown whether the arsenic methylation capacity affects the arsenic-induced reduction of muscle mass and elevation of IR. Therefore, this study examined the associations between the arsenic methylation status and skeletal muscle mass measures with regard to IR by recruiting 437 participants from low- and high-arsenic exposure areas in Bangladesh. The subjects' skeletal muscle mass was estimated by their lean body mass (LBM) and serum creatinine levels. Subjects' drinking water arsenic concentrations were positively associated with total urinary arsenic concentrations and the percentages of MMA, as well as inversely associated with the percentages of DMA and the secondary methylation index (SMI). Subjects' LBM and serum creatinine levels were positively associated with the percentage of DMA and SMI, as well as inversely associated with the percentage of MMA. HOMA-IR showed an inverse association with SMI, with a confounding effect of sex. Our results suggest that reduced secondary methylation capacity is involved in the arsenic-induced skeletal muscle loss that may be implicated in arsenic-induced IR and cardiometabolic diseases.


Arsenic , Arsenicals , Arsenic/analysis , Arsenic/toxicity , Environmental Exposure/statistics & numerical data , Humans , Methylation , Muscle, Skeletal
14.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Article En | MEDLINE | ID: mdl-34443939

Interleukin-6 (IL-6) is an important immuno-modulating cytokine playing a pivotal role in inflammatory processes in disease induction and progression. As IL-6 serves as an important indicator of disease state, it is of paramount importance to develop low cost, fast and sensitive improved methods of detection. Here we present an electrochemical immunosensor platform based on the use of highly porous graphitic carbon electrodes fabricated by direct laser writing of commercial polyimide tapes and chemically modified with capture IL-6 antibodies. The unique porous and 3D morphology, as well as the high density of edge planes of the graphitic carbon electrodes, resulted in a fast heterogeneous electron transfer (HET) rate, k0 = 0.13 cm/s. The resulting immunosensor showed a linear response to log of concentration in the working range of 10 to 500 pg/mL, and low limit of detection (LOD) of 5.1 pg/mL IL-6 in phosphate buffer saline. The total test time was approximately 90 min, faster than the time required for ELISA testing. Moreover, the assay did not require additional sample pre-concentration or labelling steps. The immunosensor shelf-life was long, with stable results obtained after 6 weeks of storage at 4 °C, and the selectivity was high, as no response was obtained in the presence of another inflammatory cytokine, Interlukin-4. These results show that laser-fabricated graphitic carbon electrodes can be used as selective and sensitive electrochemical immunosensors and offer a viable option for rapid and low-cost biomarker detection for point-of-care analysis.

15.
Nutrients ; 13(6)2021 May 30.
Article En | MEDLINE | ID: mdl-34070845

Fermented rice bran (FRB) is known to protect mice intestines against dextran sodium sulfate (DSS)-induced inflammation; however, the restoration of post-colitis intestinal homeostasis using FRB supplementation is currently undocumented. In this study, we observed the effects of dietary FRB supplementation on intestinal restoration and the development of fibrosis after DSS-induced colitis. DSS (1.5%) was introduced in the drinking water of mice for 5 days. Eight mice were sacrificed immediately after the DSS treatment ended. The remaining mice were divided into three groups, comprising the following diets: control, 10% rice bran (RB), and 10% FRB-supplemented. Diet treatment was continued for 2 weeks, after which half the population of mice from each group was sacrificed. The experiment was continued for another 3 weeks before the remaining mice were sacrificed. FRB supplementation could reduce the general observation of colitis and production of intestinal pro-inflammatory cytokines. FRB also increased intestinal mRNA levels of anti-inflammatory cytokine, tight junction, and anti-microbial proteins. Furthermore, FRB supplementation suppressed markers of intestinal fibrosis. This effect might have been achieved via the canonical Smad2/3 activation and the non-canonical pathway of Tgf-ß activity. These results suggest that FRB may be an alternative therapeutic agent against inflammation-induced intestinal fibrosis.


Diet/methods , Fermentation , Intestinal Diseases/prevention & control , Oryza , Animals , Dextran Sulfate , Dietary Supplements , Disease Models, Animal , Female , Fibrosis , Inflammation/physiopathology , Mice , Mice, Inbred C57BL
16.
PLoS One ; 16(3): e0248142, 2021.
Article En | MEDLINE | ID: mdl-33705449

Multifunctional and low-cost electrode materials are desirable for the next-generation sensors and energy storage applications. This paper reports the use of pencil graphite as an electrode for dual applications that include the detection of free residual chlorine using electro-oxidation process and as an electrochemical energy storage cathode. The pencil graphite is transferred to cellulose paper by drawing ten times and applied for the detection of free residual chlorine, which shows a sensitivity of 27 µA mM-1 cm-2 with a limit of detection of 88.9 µM and linearity up to 7 mM. The sample matrix effect study for the commonly interfering ions such as NO3-, SO42-, CO32-, Cl-, HCO3- shows minimal impact on free residual chlorine detection. Pencil graphite then used after cyclic voltammogram treatment as a cathode in the aqueous Zn/Al-ion battery, showing an average discharge potential plateau of ~1.1 V, with a specific cathode capacity of ~54.1 mAh g-1 at a current of 55 mA g-1. It maintains ~95.8% of its initial efficiency after 100 cycles. Results obtained from the density functional theory calculation is consistent with the electro-oxidation process involved in the detection of free residual chlorine, as well as intercalation and de-intercalation behavior of Al3+ into the graphite layers of Zn/Al-ion battery. Therefore, pencil graphite due to its excellent electro-oxidation and conducting properties, can be successfully implemented as low cost, disposable and green material for both sensor and energy-storage applications.

17.
J Adv Vet Anim Res ; 8(4): 557-562, 2021 Dec.
Article En | MEDLINE | ID: mdl-35106294

OBJECTIVE: Duck virus enteritis is a severe viral disease that kills ducks and swans worldwide. The clinical manifestations, gross pathology, molecular detection, and characterization of the duck virus enteritis virus (DVEV) in Australian black swans at a safari park in Bangladesh were described in this case report. MATERIALS AND METHODS: On a safari park in Bangladesh, an Australian black swan flock exhibited clinical signs of anorexia, greenish watery diarrhea, increased thirst, partial paralysis, and death. Postmortem examinations of deceased swans revealed extensive pathological abnormalities in the trachea, liver, and spleen. To isolate DVEV, a viral inoculum produced from the liver and spleen of dead swans was implanted into 9-13-day-old embryonated duck eggs via the chorioallantoic membrane (CAM) route. DVEV was confirmed using a polymerase chain reaction (PCR) assay. Phylogenetic analysis was used to determine the genetic relationship between the DVEV isolates from Australian black swans, and 16 DVEV isolates previously described in the GenBank. RESULTS: Hemorrhage was noted in the annular ring of the trachea, as well as an enlarged and hemorrhagic liver and spleen. The PCR assay amplified a 446-bp fragment of the DVEV DNA polymerase gene in the liver, spleen, and CAM homogenates. The phylogenetic analysis found that the DVEV isolates from swans were comparable to those from Bangladesh, India, Vietnam, China, Germany, the USA, and Egypt. CONCLUSION: According to the findings of this study, the DVEV was the cause of illness and mortality in an Australian black swan flock.

18.
RSC Adv ; 11(11): 5958-5992, 2021 Feb 02.
Article En | MEDLINE | ID: mdl-35423128

With the rapid propagation of flexible electronic devices, flexible lithium-ion batteries (FLIBs) are emerging as the most promising energy supplier among all of the energy storage devices owing to their high energy and power densities with good cycling stability. As a key component of FLIBs, to date, researchers have tried to develop newly designed high-performance electrochemically and mechanically stable pliable electrodes. To synthesize better quality flexible electrodes, based on high conductivity and mechanical strength of carbonaceous materials and metals, several research studies have been conducted. Despite both materials-based electrodes demonstrating excellent electrochemical and mechanical performances in the laboratory experimental process, they cannot meet the expected demands of stable flexible electrodes with high energy density. After all, various significant issues associated with them need to be overcome, for instance, poor electrochemical performance, the rapid decay of the electrode architecture during deformation, and complicated as well as costly production processes thus limiting their expansive applications. Herein, the recent progression in the exploration of carbonaceous materials and metals based flexible electrode materials are summarized and discussed, with special focus on determining their relative electrochemical performance and structural stability based on recent advancement. Major factors for the future advancement of FLIBs in this field are also discussed.

19.
RSC Adv ; 11(37): 22937-22950, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-35480423

In this study, gel polymer electrolytes (GPEs) were prepared using polyacrylonitrile (PAN) polymer, ethylene carbonate (EC), propylene carbonate (PC) plasticizers and different compositions of tetrapropylammonium iodide (TPAI) salt. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) measurements were done using non-blocking Pt-electrode symmetric cells. The limiting current (J lim), apparent diffusion coefficient of triiodide ions and exchange current were found to be 12.76 mA cm-2, 23.41 × 10-7 cm2 s-1 and 11.22-14.24 mA cm-2, respectively, for the GPE containing 30% TPAI. These values are the highest among the GPEs with different TPAI contents. To determine the ionic conductivity, the EIS technique was employed with blocking electrodes. The GPE containing 30% TPAI exhibited the lowest bulk impedance, R b (22 Ω), highest ionic conductivity (3.62 × 10-3 S cm-1) and lowest activation energy. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques were utilized for structural characterization. Functional group interactions among PAN, EC, PC and TPAI were studied in the FTIR spectra of the GPEs. An up-shift of the XRD peak indicates the polymer-salt interaction and possible complexation of the cation (TPA+ ion) with the lone pair of electrons containing site -C[triple bond, length as m-dash]N at the N atom in the host polymer matrix. On the other hand, computational study shows that TPAI-PAN based GPE possesses the lowest frontier orbital bandgap, which coincided with the enhanced electrochemical and electrocatalytic performance of GPE. The dye-sensitized solar cell (DSSC) fabricated with these GPEs showed that the J SC (19.75 mA cm-2) and V OC (553.8 mV) were the highest among the GPEs and hence the highest efficiency, η (4.76%), was obtained for the same electrolytes.

20.
Sci Rep ; 9(1): 4659, 2019 Mar 15.
Article En | MEDLINE | ID: mdl-30874625

A reagent-less pH sensor based on disposable and low cost carbon fibre cloth (CFC) is demonstrated for the first time, where tungsten oxide nanoparticles were grown directly onto the CFC substrate. For comparison purpose, tungsten oxide nanoparticle modified glassy carbon electrode (GCE) was also fabricated as a pH sensor, where hydrothermally synthesized tungsten oxide nanoparticles were drop casted onto the GCE surface. The corresponding equilibrium potential using tungsten oxide/CFC as a pH sensor was measured using open circuit potential (OCP), and was found to be linear over the pH range of 3-10, with a sensitivity of 41.38 mVpH-1, and response time of 150 s. In the case of tungsten oxide/GCE as a pH sensor, square wave voltammetry (SWV) was used to measure the shifts in peak potential and was found to be linear with a pH range of 3-11, and a sensitivity of 60 mVpH-1 with a potential drift of 2.4-5.0% after 3 hour of continuous use. The advantages of tungsten oxide/CFC and tungsten oxide/GCE as pH sensing electrode have been directly compared with the commercial glass probe based electrode, and validated in real un-buffered samples. Thereby, tungsten oxide nanoparticles with good sensitivity and long term stability could be potentially implemented as a low cost and robust pH sensor in numerous applications for the Internet of Things (IoT).

...